Common Core State Standards and PARCC Assessments: Shifting Conceptualizations of Content, Instruction, and Assessment

Doug Sovde, Senior Advisor Instructional Supports and Educator Engagement
Kevin Days, Associate Director for Postsecondary Engagement
Achieve
Washington, D.C.
Overview

Introductions
Expectations
The Common Core State Standards
Content Shifts
Instruction Shifts
Assessments Shifts
The Common Core State Standards –

• Provide a **consistent, clear** understanding of what students are expected to learn, so teachers and parents know what they need to do to help them.

• Designed to be robust and **relevant to the real world**, reflecting the knowledge and skills that our young people need for success in college and careers.

• Position US students to **compete successfully** in the global economy.
Colleges and universities want students to...

- Conduct research and apply that research to solve problems or address a particular issue
- Identify areas for research, narrow those topics and adjust research methodology as necessary, and evaluate and synthesize primary and secondary resources as they develop and defend their own conclusions
- Apply skills and knowledge across the content areas to solve real-world problems
- Model real world situations and persevere in solving complex and novel problems
Standards ask students to...

- **Conduct** short, focused projects and longer term in-depth research
- **Produce** clear and coherent writing whatever the selected format
- **Communicate** research findings (speaking and listening skills) and mathematical thinking
- **Model** quantitative problems with mathematics
- **Persevere** in solving problems
- **Reason** deeply about mathematics and mathematical situations
- **Make** arguments and **critique** arguments of others
The Common Core State Standards signify the need to change practice in at least three primary areas:

- Content
- Instruction
- Assessment

“These Standards are not intended to be new names for old ways of doing business. They are a call to take the next step... It is time to recognize that standards are not just promises to our children, but promises we intend to keep.”
The Common Core State Standards
45 States + DC Have Adopted the Common Core State Standards

*Minnesota adopted the CCSS in ELA/literacy only
Shift #1: Content Mathematics

<table>
<thead>
<tr>
<th>Previous Sets of Standards</th>
<th>Common Core State Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive: little or no progression from</td>
<td>Focus, coherence and clarity: emphasis on key topics at each grade level and coherent progression</td>
</tr>
<tr>
<td>grade to grade;</td>
<td>across grades</td>
</tr>
<tr>
<td>Incoherent: “checklist” mentality;</td>
<td></td>
</tr>
<tr>
<td>Unfocused: breadth over depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbalanced: either procedure or concepts,</td>
<td>Procedural fluency and understanding of concepts and skills</td>
</tr>
<tr>
<td>but rarely both together</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnected: Processes, applications and</td>
<td>Promote rigor through mathematical proficiencies (Math Practices) that foster reasoning and</td>
</tr>
<tr>
<td>content are separate</td>
<td>understanding across discipline</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shift #1: Content Mathematics

• Promoting reasoning with content, for example:

Which is closer to 1: 4/5 or 5/4?

If x doesn't equal y, and $x^2 - y^2 = 5(x - y)$ then what is $x + y$?
Shift #1: Content
ELA/Literacy

<table>
<thead>
<tr>
<th>Previous Sets of Standards</th>
<th>Common Core State Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost exclusive emphasis on literature</td>
<td>Balance of literature and informational texts; focus on text complexity</td>
</tr>
<tr>
<td>Almost exclusive emphasis on narrative writing</td>
<td>Emphasis on argument, informative/explanatory writing, and research</td>
</tr>
<tr>
<td>Little or no mention of speaking and listening skills</td>
<td>Speaking and listening skills</td>
</tr>
<tr>
<td>Literacy belong to the English teacher only</td>
<td>Literacy standards for history, science and technical subjects</td>
</tr>
</tbody>
</table>
• **Literature** includes adventure stories, historical fiction, mysteries, myths, science fiction, realistic fiction, allegories, parodies, satire, drama, graphic novels, one-act and multi-act plays, narrative poems, lyrical poems, free-verse poems, sonnets, odes, ballads, and epics (Common Core State Standards, p. 57).

• **Informational texts/literary nonfiction** include the subgenres of exposition, argument, and functional text in the form of personal essays; speeches; opinion pieces; essays about art or literature; biographies; memoirs; journalism; and historical, scientific, technical, or economic accounts (including digital sources) written for a broad audience (Common Core State Standards, p. 57).
Specialty Group Work Time

refer to questions in agenda
Shift #2: Instruction Mathematics

• Focus
 – Teachers use the power of the eraser and significantly narrow and deepen the scope of how time and energy is spent in the math classroom.

• Coherence
 – Principals and teachers carefully connect the learning within and across grades so that, for example, fractions or multiplication spiral across grade levels and students can build new understanding onto foundations built in previous years.

• Fluency
 – Students are expected to have speed and accuracy with simple calculations; teachers structure class time and/or homework time for students to practice core functions so they are more able to understand and manipulate more complex concepts.
Shift #2: Instruction Mathematics

• Deep Understanding
 – Teachers teach more than “how to get the answer” and instead support students’ ability to access concepts from a number of perspectives so that students are able to see math as more than a set of mnemonics or discrete procedures.

• Application
 – Students are expected to use math and choose the appropriate concept for application even when they are not prompted to do so.

• Intensity
 – The standards call equally for conceptual understanding, procedural skill and fluency, and application of mathematics. Meeting these standards requires intense practice.
• PK-5: Balancing Informational & Literary Texts
 – Students read a true balance of informational and literary texts. At least 50% of what students read is informational.

• 6-12: Building Knowledge in the Disciplines
 – Content area teachers outside of the ELA classroom emphasize literacy experiences in their planning and instruction.

• Staircase of Complexity
 – Students read the central, grade appropriate text around which instruction is centered. Teachers are patient, create more time and space in the curriculum for this close and careful reading, and provide appropriate and necessary scaffolding and supports so that it is possible for students reading below grade level.
• **Text-Based Answers**
 - Teachers insist that classroom experiences stay deeply connected to the text on the page and that students develop habits for making evidentiary arguments both in conversation, as well as in writing to assess comprehension of a text.

• **Writing from Sources**
 - Writing needs to emphasize use of evidence to inform or make an argument rather than the personal narrative and other forms of decontextualized prompts.

• **Academic Vocabulary**
 - By focusing on comprehension of pivotal words (such as “discourse,” “generation,” “theory,” and “principled”) teachers constantly build students’ ability to access more complex texts.
Shift #2: Instruction

Specialty Group Work Time

refer to questions in agenda
Shift #3: PARCC: Next Generation Assessments
Partnership for Assessment of Readiness for College and Careers (PARCC)
Create High-Quality Assessments

BEGINNING
OF YEAR

Flexible

END
OF YEAR

Early Assessment
• Early indicator of student knowledge and skills to inform instruction, supports, and PD

Mid-Year Assessment
• Performance-based
• Emphasis on hard to measure standards
• Potentially summative

Performance-Based Assessment (PBA)
• Extended tasks
• Applications of concepts and skills

End-of-Year Assessment
• Innovative, computer-based items

Summative assessment for accountability

Formative assessment

ELA/Literacy
• Speaking
• Listening

21
Shift #3: Assessments

<table>
<thead>
<tr>
<th>CURRENT ASSESSMENT SYSTEMS...</th>
<th>PARCC’S NEXT-GENERATION ASSESSMENT SYSTEM WILL...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Include tests with disconnected purposes (e.g., instructional improvement vs. accountability vs. college admissions)</td>
<td>• Include multiple components in each grade in addition to end-of-year tests to produce a more complete picture of student performance</td>
</tr>
<tr>
<td>• Are not challenging enough to measure college and career readiness and therefore have no currency with higher education (or most students)</td>
<td>• Provide a common measure of college and career readiness, and will include a college-ready cut score to signal readiness for credit-bearing, college-level coursework that will be valued by postsecondary</td>
</tr>
<tr>
<td>• Fail to generate information for educators and students quickly enough or at all</td>
<td>• Leverage new technologies in assessment and reporting to get timely and actionable student data to educators and parents</td>
</tr>
<tr>
<td>• Do not measure the full range of college- and career-ready knowledge and skills (e.g., research, critical thinking, and collaboration)</td>
<td>• Include a range of item types that allow for the assessment of higher-order skills and measure the CCSS in full</td>
</tr>
<tr>
<td>• Are widely inconsistent across states, and impossible to compare</td>
<td>• Measure students’ mastery of Common Core State Standards, and mitigate challenges associated with student mobility by ensuring students will have the same expectations wherever they live</td>
</tr>
</tbody>
</table>
The Illustrative Mathematics Project

Grade/HS Conceptual Category: Functions
Domain: Building Functions
Cluster: Build a function that models a relationship between two quantities/Build new functions from existing functions
Context Standard: 1a. Determine an explicit expression, a recursive process, or steps for calculation from a context/ 3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), (f)(x), and f(x + h) for specific values of k (both positive and negative), find the value of k given graphs.

Debbie and Joey have decided to earn money during the vacation. Each receives a weekly allowance and has also taken a job. The graphs model their weekly income, including allowance, as a function of the number of hours they work.

(a) Write an equation that can be used to calculate the amount of money each person Debbie will earn per week given the number of hours worked.
b) Write an equation that can be used to calculate the amount of money Joey will earn per week given the number of hours worked.
c) Joey wonders who will make more money in a week if they both work the same number of hours. Write an answer for Joey.
Shift #3: Assessment

Specialty Group Work Time

refer to questions in agenda
Comments and Questions?
“If we cannot learn wisdom from experience, it is hard to say where it is to be found.”

— George Washington
Doug Sovde: dsovde@achieve.org
Kevin Days: kdays@achieve.org

Partnership for Assessment of Readiness for College and Careers

http://www.fldoe.org/parcc/
www.achieve.org/PARCC